You are here:

Simulating Serious Games: A Discrete-Time Computational Model Based on Cognitive Flow Theory
ARTICLE

Interactive Learning Environments Volume 26, Number 4, ISSN 1049-4820

Abstract

This paper presents a computational model for simulating how people learn from serious games. While avoiding the combinatorial explosion of a games micro-states, the model offers a meso-level pathfinding approach, which is guided by cognitive flow theory and various concepts from learning sciences. It extends a basic, existing model by exposing discrete-time evolution, allowing for failure, drop-out, and revisiting of activities, and accounting for efforts made and time spent on tasks, all of which are indispensable elements of gaming. Three extensive simulation studies are presented involving over 10,000 iterations across a wide range of game instances and player profiles for demonstrating model stability and empirical admissibility. The model can be used for investigating quantitative dependences between relevant game variables, gain deeper understanding of how people learn from games, and develop approaches to improving serious game design.

Citation

Westera, W. (2018). Simulating Serious Games: A Discrete-Time Computational Model Based on Cognitive Flow Theory. Interactive Learning Environments, 26(4), 539-552. Retrieved October 21, 2019 from .

This record was imported from ERIC on January 9, 2019. [Original Record]

ERIC is sponsored by the Institute of Education Sciences (IES) of the U.S. Department of Education.

Copyright for this record is held by the content creator. For more details see ERIC's copyright policy.

Keywords