You are here:

Mining Learning Behavioral Patterns of Students by Sequence Analysis in Cloud Classroom
ARTICLE

, , , , , , National Engineering Research Center for E-Learning, Central China Normal University, Wuhan, China

IJDET Volume 15, Number 1, ISSN 1539-3100 Publisher: IGI Global

Abstract

In a MOOC environment, each student's interaction with the course content is a crucial clue for learning analytics, which offers an opportunity to record learner activity of unprecedented scale. In online learning, the educators and the administrators need to get informed with students' learning states since the performance of unsupervised learning style is difficult to control. Learning analytics considered as a key process is to provide students and educators with evidence-based, analytical and contextual outcomes in a way of making sense of their learning engagements. In this conceptual framework, this manuscript per the authors intends to adopt sequential analysis method to exploit students' learning behavior patterns in Cloud classroom (an online course platform based on MOOC). Moreover, this research also compares the behavioral patterns of four grade levels in a university, with the purpose of finding the most key behavioral patterns of each grade group.

Citation

Liu, S., Hu, Z., Peng, X., Liu, Z., Cheng, H. & Sun, J. (2017). Mining Learning Behavioral Patterns of Students by Sequence Analysis in Cloud Classroom. International Journal of Distance Education Technologies, 15(1), 15-27. IGI Global. Retrieved December 11, 2019 from .

Keywords