You are here:

Learning with Multiple Representations: Infographics as Cognitive Tools for Authentic Learning in Science Literacy | Apprendre avec des reprsentations multiples: l'infographie de presse comme outil cognitif pour l'apprentissage authentique en science ARTICLE

CJLT Volume 44, Number 1, ISSN 1499-6677 e-ISSN 1499-6677 Publisher: Canadian Network for Innovation in Education

Abstract

This paper presents a descriptive case study where infographics\u2014visual representation of data and ideas\u2014have been used as cognitive tools to facilitate learning with multiple representations in the context of secondary school students\u2019 science news reporting. Despite the complementary nature of the two research foci, studies on cognitive tools and multiple representations have evolved independently. This is because research on cognitive tools has narrowly focused on technological artifacts and their impact on learning outcomes with less attention to learner agency and activity structures. This has created challenges of sustainably applying cognitive tools in classroom teaching and learning. Using data from a design-based research project where secondary school students created authentic infographic-based science news reports, this study demonstrates how infographics can serve as process-oriented cognitive tools for learning and instruction of science literacy in classroom contexts. Results have implications for the study and design of learning environments involving representations.Cet article prsente une tude de cas o l'infographie de presse \u2013 offrant une reprsentation visuelle de donnes et d\u2019ides \u2013 est utilise comme outil cognitif pour faciliter l'apprentissage au moyen de reprsentations multiples dans le contexte de production de rapports scientifiques par des lves du secondaire. Malgr la complmentarit des deux axes de recherche, les travaux sur les outils cognitifs et sur les reprsentations multiples ont volu sparment. En effet, la recherche sur les outils cognitifs s'est strictement concentre sur les artefacts technologiques et leur impact sur les rsultats d'apprentissage mais a accord moins d'attention l\u2019action des apprenants et aux structures des activits. Il en rsulte des dfis pour l\u2019application durable d\u2019outils cognitifs dans l'enseignement et l'apprentissage en classe. partir de donnes issues d'un projet de recherche oriente par la conception (design-based research) dans lequel les lves du secondaire ont produit des rapports scientifiques authentiques intgrant des infographies de presse, cette tude montre comment l\u2019infographie de presse peut servir

Citation

Gebre, E. (2018). Learning with Multiple Representations: Infographics as Cognitive Tools for Authentic Learning in Science Literacy | Apprendre avec des reprsentations multiples: l'infographie de presse comme outil cognitif pour l'apprentissage authentique en science. Canadian Journal of Learning and Technology / La revue canadienne de l’apprentissage et de la technologie, 44(1),. Canadian Network for Innovation in Education. Retrieved October 22, 2018 from .

Keywords

View References & Citations Map

References

  1. Amiel, T., & Reeves, T. C. (2008). Design-based research and educational technology: Rethinking technology and the research agenda. Educational Technology & Society, 11 (4), 29-40. Retrieved from https://www.learntechlib.org/p/75072/
  2. Bain, J. D., McNaught, C., Mills, C., & Lueckenhausen, G. (1998). Describing computerfacilitated learning environments in higher education. Learning Environments, 1, 163– 180.
  3. Beach, K. (1999). Chapter 4: Consequential transitions: A sociocultural expedition beyond transfer in education. Review of Research in Education, 24(1), 101-139.
  4. Bera, S., & Liu, M. (2006). Cognitive tools, individual differences, and group processing as mediating factors in a hypermedia environment. Computers in Human Behavior, 22(2), 295-319.
  5. Blumenfeld, P. C., Soloway, E., Marx, R. W., Krajcik, J. S., Guzdial, M., & Palincsar, A. (1991). Motivating project-based learning: Sustaining the doing, supporting the learning. Educational Psychologist, 26(3-4), 369-398.
  6. Bowen, G. M., & Roth, W.-M. (2002). Why students may not learn to interpret scientific inscriptions. Research in Science Education, 32(3), 303-327.
  7. Cairo, A. (2013). The functional art: An introduction to information graphics and visualization. Berkeley, CA: New Riders.
  8. Cross, N. (2006). Designerly ways of knowing. London, England: Springer.
  9. George, J. W., Wood, R. D., & Bender, H. S. (2007). Characteristics of a cognitive tool that helps students learn diagnostic problem solving. Educational Technology Research and Development, 55(5), 499-520.
  10. Demirbag, M., & Gunel, M. (2014). Integrating argument-based science inquiry with modal representations: Impact on science achievement, argumentation, and writing skills. Educational Sciences: Theory & Practice, 14(1), 386-391.
  11. DiSessa, A. A. (2004). Metarepresentation: Native competence and targets for instruction. Cognition and Instruction, 22(3), 293-331.
  12. Gebre, E. H. (2017). Assessing student-generated infographics for scaffolding learning with
  13. Multiple representations. Proceedings of the 2017 Computer Supported Collaborative Learning (CSCL) Conference. Philadelphia, PA. Pp. 684-687.
  14. Gebre, E. H., & Polman, J. L. (2016). Developing young adults' representational competence through infographic-based science news reporting. International Journal of Science Education, 38(18), 2667-2687.
  15. Gilbert, J. (2008). Visualization: An emergent field of practice and enquiry in science education. In J. Gilbert, M. Reiner, & M. Nakhleh (Eds.), Visualization: Theory and Practice in Science Education (Vol. 3, pp. 3-24): Dordrecht: Springer.
  16. Hegarty, M., Carpenter, P. A., & Just, M. A. (1991). Diagrams in the comprehension of scientific texts. In R. Barr, M. L. Kamil, P. B. Mosenthal, & P. D. Pearson (Eds.), Handbook of reading research (Vol. 2, pp. 641–668). New York, NY: Longman.
  17. Herrington, J. & Parker, J. (2013). Emerging technologies as cognitive tools for authentic learning. British Journal of Educational Technology, 44(4), 607-615.
  18. Hung, W. (2008). Enhancing systems-thinking skills with modelling. British Journal of Educational Technology, 39(6), 1099-1120.
  19. Iiyoshi, T., Hannafin, M., & Wang, F. (2005). Cognitive tools and student-centered learning: rethinking tools, functions and applications. Educational Media International, 42(4), 281-296.
  20. John-Steiner, V. & Mahn, H. (1996). Sociocultural approaches to learning and development: A Vygotskian framework. Educational Psychologist, 31(3/4), 191-206.
  21. Jonassen, D. (2000). Computers as mindtools for schools: Engaging critical thinking (2nd ed.) New Jersey, NJ: Merrill.
  22. Jonassen, D. (2003). Using cognitive tools to represent problems. Journal of Research on Technology in Education, 35(3), 362-381.
  23. Jonassen, D. & Carr, C. S. (2000). Mindtools: Affording multiple knowledge representations for learning. In S. Lajoie (Ed.), Computers as cognitive tools: No more walls, (Vol. 2. 165196). Mahwah, NJ: Lawrence Erlbaum Associates.
  24. Jonassen, D., & Reeves, T. C. (1996). Learning with technology: Using computers as cognitive tools. In D. H. Jonassen (Ed.), Handbook of research for educational communications and technology (pp. 693-719). New York, NY: Macmillan.
  25. Kim, B. & Reeves, T. (2007). Reframing research on learning with technology: In search of the meaning of cognitive tools. Instructional Science, 35, 207-256.
  26. Kozma, R. (1987). The implications of cognitive psychology for computer-based learning tools. Educational Technology, 27(11), 20-25.
  27. Lajoie, S. (2000). Computers as cognitive tools: No more walls (Vol. 2). Mahwah, NJ: Lawrence Erlbaum Associates.
  28. Latour, B. (1986). Visualization and cognition: Drawing things together. In E. Long & H. Kuklick (Eds.), Knowledge and society studies in the sociology of culture past and present (pp. 1-40). Greenwich, CT: Jai Press.
  29. Lemke, J. (1998). Multimedia literacy demands of the scientific curriculum. Linguistics and Education, 10(3), 247-271. Doi:10.1016/S0898-5898(99)00009-1
  30. Lim, C. P., & Barnes, S. (2005). A collective case study of the use of ICT in Economics courses: A sociocultural approach. Journal of the Learning Sciences, 14(4), 489-526.
  31. Liu, M., Horton, L., Corliss, S., Svinicki, M., Bogard, T., Kim, J., & Chang, M. (2009). Students' problem solving as mediated by their cognitive tool use: A study of tool use patterns. Journal of Educational Computing Research, 40(1), 111-139.
  32. Lo, C. P., Affolter, J. M., & Reeves, T. C. (2002). Building environmental literacy through participation in GIS and multimedia assisted field research. Journal of Geography, 101(1), 10-19.
  33. Manlove, S., Lazonder, A., & De Jong, T. (2009). Collaborative versus individual use of regulative software scaffolds during scientific inquiry learning. Interactive Learning Environments, 17(2), 105-117.
  34. Matthewman, S. (2011). Technology and social theory. London, England: Palgrave Macmillan
  35. Mayer, R., & Gallini, J. K. (1994). When is an illustration worth ten thousand words? Journal of Educational Psychology, 82(4), 715-726.
  36. Mol, L. (2011). The potential role for infographics in science communication (Unpublished master’s thesis). Vrije Universiteit, Amsterdam.
  37. Namdar, B., & Shen, J. (2016). Intersection of argumentation and the use of multiple representations in the context of socio-scientific issues. International Journal of Science Education, 38(7), 1100-1132.
  38. National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.
  39. Pea, R. (1985). Beyond amplification: Using the computer to reorganize mental functioning. Educational Psychologist, 20(4), 167-182.
  40. Polman, J. L., & Gebre, E. H.. (2015). Towards critical appraisal of infographics as scientific inscriptions. Journal of Research in Science Education, 52(6), 868–893.
  41. Rye, J. A., & Rubba, P. A. (2002). Scoring concept maps: An expert map-based scheme weighted for relationships. School Science and Mathematics, 102(1), 33-44.
  42. Salomon, G., Perkins, D., & Globerson, T. (1991). Partners in cognition: Extending human intelligence with intelligent technologies. Educational Researcher, 20(3), 2.
  43. Lowerison, G. (2009). Technology’s effect on achievement in higher education: A stage I
  44. Stahl, G. (2006). Supporting group cognition in an online math community: A cognitive tool for small-group referencing in text chat. Journal of Educational Computing Research, 35(2), 103-122.
  45. Stake, R. E. (2006). Multiple case study analysis. New York: Guilford Press.
  46. Sudakov, I., Bellsky, T., Usenyuk, S., & Polyakova, V. V. (2016). Infographics and mathematics: A mechanism for effective learning in the classroom. PRIMIUS, 26(2), 158-167.
  47. Sugrue, B. (2000). Cognitive approaches to web-based instruction. In S. Lajoie (Ed.), Computers as cognitive tools: No more walls (pp. 133-162). Mahwah, NJ: Lawrence Erlbaum Associates.
  48. Thompson, C. (2016, July). The surprising history of the infographic: Early iterations saved soldiers’ lives, debunked myths about slavery and helped Americans settle the frontier. Retrieved on January 24, 2017 from http://www.smithsonianmag.com/history/surprisinghistory-infographic-180959563/#bZj3BMGqMtwFbhUj.99
  49. VanderMolen, J. & Spivey, C. (2017). Creating infographics to enhance student engagement and communication in health economics. The Journal of Economic Education, 48(3), 198205.
  50. Van Meter, P., & Garner, J. (2005). The promise and practice of learner-generated drawing: literature review and synthesis. Educational Psychology Review, 17, 285–325. Retrieved from https://link.springer.com/article/
  51. Verdi, M. P., & Kulhavy, R. W. (2002). Learning with maps and texts: An overview. Educational psychology review, 14(1), 27-46.
  52. Wertsch, J. V. (1998). Mind as action. Oxford: Oxford University Press.
  53. Wu, H. K., & Puntambekar, S. (2012). Pedagogical affordances of multiple external representations in scientific processes. Journal of Science Education and Technology, 21(6), 754-767.
  54. Yore, L. D., & Hand, B. (2010). Epilogue: Plotting a research agenda for multiple representations, multiple modality, and multimodal representational competency. Research in Science Education, 40(1), 93-101.

These references have been extracted automatically and may have some errors. If you see a mistake in the references above, please contact info@learntechlib.org.