You are here:

Exploring the assessment of geological observation with design research

, George Mason University, United States

Doctor of Philosophy, George Mason University . Awarded


The purpose of this study was to investigate the assessment of geological observation through the development and field testing of performance tasks. The study addressed a central challenge in geoscience education: for students to observe the world around them and make real-world connections. Yet, there existed no cohesive research approach for the study of observation in geoscience education. The research goal was to understand the assessment of geological observation.

The design research of geological observation encountered the situation where few performance assessments existed and few domain-specific learning theories were available. Design research is suited to inquiries in which a domain of learning is unexplored and the phenomena needs to be supported in the classroom in order to study it. This dissertation addressed one general research question and four subquestions: (RQ) How should geological observation be assessed? (S1) What role did perception play in assessing students' geological observations? (S2) What role did explanation play in assessing students' geological observations? (S3) What role did gestures play in assessing students' geological observations? (S4) Were there performance differences between the first and second trial of the GO Inquire prototype with fourth graders? Students were supported in making geological observations with three performance tasks: GO Inquire stamp task, Cutting task, and Fieldguide task. The data set for this study consisted of student response data, videorecordings, and participant observations from seven field tests across one fourth and one fifth grade class.

Three data-analytic methods, qualitative coding, item-difficulty analysis, and non-parametric comparisons, were utilized based on four mixed-method data analysis strategies: typology development, data transformation, extreme case analysis, and data consolidation. Analysis revealed that assessment should take into account the separation of visual from verbal responses which inform different components of the performance of geological observation. In addition, assessment should identify the use of iconic gestures, which were more associated with relevant observations than deictic gestures during classroom interactions. The analysis informed the redesign of performance tasks. A conceptual framework of design assessment for geological observation was offered that linked the methods of design with research to guide future inquiry.


Baek, J.Y. Exploring the assessment of geological observation with design research. Doctor of Philosophy thesis, George Mason University. Retrieved January 20, 2020 from .

This record was imported from ProQuest on October 22, 2013. [Original Record]

Citation reproduced with permission of ProQuest LLC.

For copies of dissertations and theses: (800) 521-0600/(734) 761-4700 or