You are here:

Detecting Students at Risk: Adventures in AI
PROCEEDING

, Pepperdine University, United States

Society for Information Technology & Teacher Education International Conference, in Las Vegas, NV, United States ISBN 978-1-939797-37-7 Publisher: Association for the Advancement of Computing in Education (AACE), Chesapeake, VA

Abstract

Identifying students at academic risk early in the matriculation process, especially online students, is on ongoing challenge. The evidence to date suggests that early invention can have a positive impact on student learning performance. One very telling variable in this regard is freshman performance. Current date suggests that nearly one-half of United States universities are experiences a first-year student attrition rate of 25 percent. Time is often the essence since waiting until midterm exam results to intervene can often prove problematic. In this regard, web-based learning management systems (LMS) provide an effective vehicle for not only modifying content and pace, but also for incorporating addition assessment variables early in the assessment process. The data indicates that continuous assessment encourages student engagement, which is turn enhances student learning outcomes. This is particularly true for online programs where a sense of isolation is often the norm. Specifically, providing continuous performance metrics (e.g., weekly quizzes) as well as monitoring the extent of student engagement within the LMS can help identify those students that may require additional assistance. The purpose off the presentation is to highlight the growing opportunities for using AI in detecting students at risk and outlining effective intervention strategies.

Citation

Hall, Jr., O. (2019). Detecting Students at Risk: Adventures in AI. In K. Graziano (Ed.), Proceedings of Society for Information Technology & Teacher Education International Conference (p. 1841). Las Vegas, NV, United States: Association for the Advancement of Computing in Education (AACE). Retrieved December 15, 2019 from .

Slides